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DECOMPOSITION OF RANGES
OF VECTOR MEASURES

BY
ABRAHAM NEYMAN'

ABSTRACT

The following conditions on a zonoid Z, i.e., a range of a non-atomic vector
measure, are equivalent: (i) the extreme set containing 0 in its relative interior is
a parallelepiped; (ii) the zonoid Z determines the m-range of any non-atomic
vector measure with range Z, where the m-range of a vector measure p is the
set of m-tuples (u(S,),- -, u(S,,)), where S,, -+, S, are disjoint measurable
sets; and (iii) there is a vector measure space (X, 2, ) such that any finite
factorization of Z, Z=2Z, in the class of zonoids could be achieved by
decomposing (X, 2). In the case of ranges of non-atomic probability measures (i)
is automatically satisfied, so (ii) and (iii) hold.

1. Introduction

Let X be a o-field of subsets of a set X and u :3— R" be countably additive.
Such a u is called a vector measure; p is non-atomic if u(E)# 0 implies the
existence of an F C E with 0# u(F) and u(F)# n(E). A zonoid is the range
R(p)={u(E) I E € 3} of a non-atomic vector measure u. Write F for the set of
zonoids. Lyapunov’s theorem asserts that ¥ C %, where ¥ is the class of all
convex compact subsets of R" which contain 0.

The decomposition m-range R... (i) of the vector measure u is defined to be
the family of m n-dimensional vectors

R, (,L)={(u(s,),~--,p(sm)): Q S$S=XS€38NS =®fori7‘j}.

Let Z € & and let u be a non-atomic vector measure with R(u) = Z. We say
that Z = Z,+ Z, is a zonoid decomposition of Z =R(n) if Z,,Z,€EF Itis a
zonoid decomposition with respect to . if there is S in X such that Z, = R(u, $) =
{u(E)l E €%, E CS}. Observe that then also Z, = R(u, S°) where $° = X\S.
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A compact convex subset E of a compact convex set K is an extreme set of K
if ax+(l—-a)y€E and 0<a<1l, x,y€EK imply that x € E. For every
x € K€ X there is a unique extreme set E of K containing x in its relative
interior. The set of extreme points of a compact convex set K is denoted by
ext K.

THEOREM 1. The following conditions on a zonoid Z are equivalent.

(A) For every two non-atomic vector measures p and o, with R(n) = R(o) =
Z, Ru(p) = R..(0) for every m = 1.

(B) There is a vector measure space (X,3, u) with R(w) = Z, such that any
zonoid decomposition Z = Z, + Z, is a decomposition with respect to p.

(C) The extreme set of Z containing Q in its relative interior is a parallelepiped.

In Section 2 we define a definite zonoid.

The proof of Theorem I is accomplished (in Section 3) by proving that each of
the three conditions, (A), (B) and (C), is equivalent to a fourth one, (D)—Z is a
definite zonoid.

Along the proof of Theorem I we obtain some results which might have
independent interest. In Section 4 we study decompositions of sums of countable
many one-dimensional zonoids.

2. The standard measure

In this section we sketch briefly the relation between the range of a vector
measure and the distribution of the Radon-Nikodym derivatives of its compo-
nents. A more detailed account is given in Bolker [1], where additional results
and references are given.

Let (X, 2, u) be a vector measure space; u:3— R". Let ||u|b, or |u] for
short, be the total variation of u with respect to the Euclidean norm, i.e., | | is
the scalar measure on (X, 3) given by

|118) = sup 3, N (T,

where the sup is taken over all measurable partitions (T;);-, of X i.e., . €S,
TNT, =@, forl<si<jsnand U_ T, =X

Let f be the Radon-Nikodym derivative of u with respect to |u|. Then
f:X—>8"", |u|-almost everywhere. Denote by m, the measure |w|of™' on
(S"7', B) where B denotes the Borel subsets of S"™. A positive scalar measure
1 on $" ' will be called a standard measure. Every standard measure 7 induces a
vector measure 7 on $"”' given by #(A) = [.udn(u) for every A € B. The
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vector measure 4 is non-atomic if and only if % is non-atomic. The convex hull
of the range of a vector measure is the range of a non-atomic vector measure,
and thus the convex hull of R(7), which will be denoted by Z(n), is a zonoid. If
7 is a measure on R" with f||x [/ dn(x) <, Z(n) is similarly defined. If n,, 1,
are two standard measures then Z(n: + n.) = Z(m1) + Z(n2). The support func-
tion H(K,-) of a convex set K is defined for ¢ ER” by H(K &)=
sup{(x, ._f),x € K}, where (-,-) denotes the inner product in R". If 5 is the
standard measure associated to the non-atomic vector measure, then for every
AERB fau-dn(u)=pu(f'(A)), and thus R{u) D R(7). On the other hand,
H(R(n), €)= (n(A(£),€), where A(¢)={x € X |(f(x),£)=0}=f(H,),
where H, ={u € S"“,(u, €)= 0}, and thus Z(n) D R(w). As R(u) is convex,
and ®(7) closed, Z(n) = ®(w). Thus every zonoid is of the form Z(n) for some
standard measure 7. If n is a standard measure we define the standard measure
n* on §" by 1°(E)=(n(E)+n(- E)2.

Lemma 2.1. ({4, theorem 2], {2, theorem 22], [1, corollary 2.9]). Z(m.) is a
translate of Z(n,) if and only if ni=n;.

A zonoid Z is called a definite zonoid if it uniquely determines its standard
measure, i.e., for any two standard measures 7, and 7, with Z(n,) = Z = Z(n,),

M= "n2.

3. The proof of Theorem 1

We will prove that each of the conditions (A), (B), (C) is equivalent to
(D)— Z is definite.

LEMMA 3.1. Let Z be a definite zonoid, 0 the center of symmetry of Z. Then Z
is a parallelepiped.

Proor. Let Z=2Z(u). If u* denotes the standard measure given by
u*(E)=u(—E) then Z(u*)= —Z(n). As 0 is the center of symmetry of
Z(pn), Z(u*)= —Z(n)=Z(p) and thus Z(u*) = Z(u), but Z is definite and
therefore p = pu*

Let T:L«u)—R" be the linear transformation defined by Tf=
S~ f(u)udp (u).

Let W be the subspace of L.(n) of all anti-symmetric functions, i.e.,
f(x)= —f(—x) p-almost everywhere.

Assume first that dim W > n. Then, there is f € W, 0<||f|l-<1, such that
Tf =0, i.e., [ f(x)xdu(x)=0. Let 7 be the measure on S"~* which is absolutely
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continuous with respect to u, with dn/du =1—f As | f|l-<1, 7 is a standard
measure, and as || f|| #0, n# u. As f is anti-symmetric it follows that for every
AERB n(AU—-A)=u(A U — A) and therefore by Lemma 2.1, Z(n) is a
translate of Z(u). In order to show that Z(n) = Z(u) we have to show that both
have the same center of symmetry, i.e., to show that 7(S""") = 1 (S"™"). But

(5™ = [ (= D@ () = w8™) [ F I ()aAs™ ) = s™)

and thus Z(n)=Z(n). Therefore if Z is a definite zonoid, dim W =n.
However, dim W = n iff there is a finite set A with # A =n,suchthat AU - A
is a support of u. Without loss of generality we could assume that dimZ = n
which implies that the set A consists of linearly independent vectors, i.e., Z(u)
is a sum of linearly independent line segments — a parallelepiped.

LemMma 3.2. Every zonoid Z has a decomposition of the form Z =Z,+ Z,
where 0 is the center of symmetry of Z, and an extreme point of Z,.

ProOF. Let Z =Z(u) where u is a standard measure, v = [ xdu(x).
Denote by W'the set W'={f € L.(u) | 0=f=1, [f(x)xdu(x) = v}, ie., in the
notations of the previous lemma, W'= T '(v) N{f € L(n) | 0=f=1}. Thus W*
is convex and compact, and if f. € W', f,.,=f. and limf, = f then by the
Lebesgue dominated convergence theorem f € W'. Using Zorn’s lemma we
deduce the existence of f € W" such that there isno g € W' with g = f, g#f.
Let p, be the standard measure whose Radon-Nikodym derivative with respect
to u is f, and p,=p —p,. Then Z(p)= Z(u;)+ Z(u.). First we claim that
0 € ext Z(u,). Otherwise there is 0=g,, g.= f such that 0# J g,(x)xdu(x) =
—fg(x)xdu(x). Let f'=f—(gi+g)2. Then f'<f and f'€ W' Thus
0E€ext Z(n). As fEW', 4(S"")=v and thus @,(S"')=v—v =0, which
proves that 0 is the center of symmetry of Z,.

LeMMA 3.3. Let O be an extreme point of a zonoid Z. Then Z is definite.

Proor. By induction on dim Z. Assume 7, and 7, are two standard measures
with Z = Z{(n,) = Z(n.). We have to prove that n,=,. If dimZ =1, this is
obvious. Let dim Z > 1. As 0 is an extreme point of Z, there is £ € R" for which
(x,£)=0 for every x€Z, and dimF(Z ¢)<dimZ where F(Z ¢) is the
corresponding face, ie., F(Z, &)={x€Z l(x, &) =H(Z ¢)=0}. Then H; is a
support for n;. If we denote by 7, i =1, 2, the standard measure 7, restricted to
&={xeRrR" l(x, &) =0}, then F(Z &)= Z(7:). By the induction hypothesis
M =17,. Let o =nm — 1, i =1,2. Then as Z(n) = Z(%;)+ Z(0:) we conclude
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that Z(o) = Z(0>). Thus, by Lemma 2.1, o3 = 05. As Hy = HA¢* is a support of
both o, and o, and as Hi N — H; = & we conclude that o, = ¢, and thus n; = ..

Two sets K,,K,€ K are independent if dim(K,+ K;) =dim K, +dim K,
where dim K (for K € %) is the dimension of the minimal subspace containing
K

LemMmA 3.4. If Z, and Z, are two independent definite zonoids then Z, + Z, is
definite.

PROOF. Let n, m1, n; be standard measures with Z(n) = Z(n.) + Z(n.) and
Zm)=2Z, i=1,2. Then Z(n°)=Z(ni)+Z(n3)=Z(ni+75) and thus by
Lemma 2.1, n° = ni+ n3. Let V,, i = 1,2, be the minimal subspace of R" which
contains Z. As Z, and Z, are independent, V,NV,={0} and thus
ViNnV,NS"'=@. As V, is a subspace containing Z;, i = 1,2, it follows that
V.NS""' is a support for m;, and thus (V,UV;)NS"" is a support for
n° =ni+ns. Let 4 be the restrictionof n to V, N "', i =1,2. It is enough to
prove that 7; = n.. Obviously, %i=n; and thus by Lemma 2.1 Z(#)=
Z(m)+ X, i=1,2. As Z(9)— Z(n:)C V,, X; € V.. However

Z(m)=Z(m)+Z(m2)=Z(M)+ Z(7)
=X+ Xo+ Z(m)+ Z(n) = (Xi + X5) + Z(m).

Therefore X,+ X.;=0. But dim(V,;+ V,)=dim V,+dim V, and therefore
X1 + Xz = 0 lmplies that X] = 0 = Xz. Thus Z(ﬁ,) = Z(’n.). As Z(n.) iS deﬁnite,

=
CoroLLARY 3.5. Every parallelepiped containing 0 is a definite zonoid.

Proor. Every one-dimensional zonoid is definite and a parallelepiped con-
taining O is an independent sum of one-dimensional zonoids.
The class of zonoids obeying condition (C) of Theorem 1 will be denoted %, .

Lemma 3.6. (D) & (O).

Proor. (C) = (D). Let Z be a zonoid in %,. We will prove that Z is definite
by induction on dim Z — dim F(0) where F(0) is the (unique) extreme set of Z
containing 0 in its relative interior. Without loss of generality (w.l.o.g.) dimZ =
n. If dim Z — dim F(0) = 0, then 0 is in the relative interior of Z, and as Z € %,,
it means that Z is a parallelepiped which is definite by Corollary 3.5. If
dimZ -dim F(0)= 1, there is £ € R" such that

0€ F(Z, &) ={v € Z | (v, £) = max{(x, £)| x € Z}.
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As F(Z, ) is an extreme set of Z, it follows that F(0)C F(Z, §€). Let Z = Z(u),
and let w, be the standard measure p restricted to ¢ =(x ER" ](x, £) =0}, and
let wo=pu — ui. Then, 0 € ext Z(u,) and F(Z, §) = Z(u.1).

By Lemma 3.3, Z(u.) is definite, and by the induction hypothesis Z(u.,) is
definite. Thus for any standard measure o with Z(o)=Z, if o, denotes the
standard measure o restricted to ¢, Z(a\) = F(Z, £) = Z(w.) and thus o, = 4,
and Z(o0 —0,)=Z(u.) and thus o — o, = u. which, together with o, = pu,,
implies that o = u, i.e., that Z is definite. This proves that (C) = (D).

(D) = (C). Assume that Z is definite. W.l.o.g. dim Z = n. First assume that 0
is in the relative interior of Z, i.e., that F(0)=Z By Lemma 3.2, there is a
zonoid decomposition Z = Z,+ Z, where 0 €extZ,, and 0 is the center of
symmetry of Z,. Obviously, if Z is definite then Z, is definite and thus, by
Lemma 3.1, Z, is a parallelepiped. As 0 € ext Z,, and 0 is in the relative interior
of Z,, it follows that dim F(0) = dim Z, and therefore dimZ, = n. Let x4, -, x,
be n linearly independent vectors in S"' such that A=
{x;,-, x }U{—2x1,-*,— x,} is a support of u, where Z,= Z(u,). As 0 is the
center of symmetry of Z,, w,({x:}) = uo({ — x:})>0. Let Z, = Z(u.1). In order to
prove that Z, + Z, is a parallelepiped it is enough to show that A is a support of
w1 Otherwise, there is BE R such that BNA =, BN -B=( and
f(B)#0. As x,, - -, x, are linearly independent, there is a linear combination
Saix = pi(B). Let 0<B =1 be such that |Boi|=p.({x:}). Let u, be the
standard measure supported on A and given by

pa{ = x )= Bai = po({— %) = pa({x:}) = ma({x:}) + Ba.
Let w; be the standard measure given by
uE)=pu(E)— B - p(E N B)+ Bui(~ ENB).

Observe that o = us+ . is a standard measure, and that o # u. It could be
easily verified that for every EE®B, o(EU —E)=p(EU —E) and that
6(S"") = (S""") and therefore Z(o)= Z(n). Thus by contradiction A is a
support for u,, which completes the proof in the case Z = F(0). Otherwise,
0 € ext Z, and thus there is ¢ € R suchthat 0 € F(Z, £). Let Z = Z(u) and let pu,
be the standard measure . restricted to £*. Then Z(u,) is definite and thus by
the induction hypothesis, the extreme set of F(Z, £) containing 0 in its relative
interior is a parallelepiped. This completes the proof of Lemma 3.6.

Lemma 3.7. (D) & (B).

Proor. (D) = (B). Let Z be a definite zonoid and let Z = Z(n) where n isa
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standard measure. Let (X,2,u) be the product vector measure space
(S"', B, 1) % ([0,1], B, A) where A is Lebesgue measure on ([0,1], B). Let
Z = Z,+ Z, be a zonoid decomposition of Z. Let Z, = Z(n), Z, = Z(n,) where
7. and 17, are standard measures. Then Z(n)=Z =Z,+ Z,= Z(m) + Z(n;) =
Z(m+mn) and as Z is definite, 7 =7, + n.. Let f; be the Radon-Nikodym
derivative of 7, with respect to n; then 0=f=1. Let S ={(», t)l ues,
0=1t=f(u)}, then S is measurable and R(u, S)= Z(7,), which completes the
proof that (D) = (B).

(B) > (D). By contradiction. Assume that Z is not a definite zonoid. Let
(X;%,u) be a non-atomic vector measure with ®(u)=2Z Let 7, be the
standard measure associated to u ; and let n be a standard measure with n # 7,
and Z(n)=Z = Z(n,). As n# n,, there are ¢ € R", a >0 for which (n —7,)
ue S"“f(u, &Hza})>0. Let A={v € S""[(v, &)= a}, and let n, be the
standard measure 7 restricted to A. Then Z = Z(n,)+ Z(n — n,). Assume that
there is S €3 with R(u,S)=Z(n:). Obviously the standard measure n’
associated to s obeys n'(A) = 7,.(A). However, 0 is an extreme point of Z(7,)
and thus 0, = n’, which contradicts the inequalities '(A)=7,.(A)<ni(A).

LemMa 3.8. (D) © (A).

ProoF. (D)= (A). Let Z be a definite zonoid and let u,o be two non-
atomic vector measures on the measurable spaces (X, %), (X, 3,), respectively.
Let (x1,°"°, %) € R () and let (E;)i~, be a measurable partition of X, (i.e.,
EE€3, ij>ENE =g, U_ E=X,) with u(E))=x. Let n be the
standard measure with Z(n)=%®(x) and let n be the standard measure
associated to the vector measure u restricted to E;. Then X2, m: = n. Let f,
1 =i = m, be the Radon-Nikodym derivative of 7, with respect to 5. Let g be
the Radon-Nikodym derivative of o with respect to ||, and let f; = f, o g. Then
0=f =1,3" f =1, and [ fdo = [ f(v)vdn = X,. By [3, theorem 4], there is a
measurable partition (S;)i~; of (X;,3,) for which o(S))=x. Therefore
(x1,° ", Xm) € R (0) which completes the implication (D) = (A).

(A) = (D). By contradiction. Assume that Z is not definite. Let 7, 1, be two
different standard measures with Z(n,)=Z = Z(n,). Let ¢ € Z be given by
| €l| = max{||x|:x € Z}. Then, F(Z ¢)={¢} and thus both =, and 7, are
supported on S$"\é* and £ = [u; udni(u), i =1,2. Let 7 be the standard
measure 1) restricted to H;. As Z(m)=Z(n.), ni=n3 (Lemma 2.1) and
therefore if 7; # n, then also ), # .. But 0 € ext Z(#,) and thus Z(4},) # Z(4}.).
Without loss of generality there is x € Z(f:)\Z(7,). Let y be the center of
symmetry of Z, i.e., 2y = :(S"""). Then the vector (x,£&—x,2y —§) is in
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Rs(77: X A) but not in Rs(7j. X A), where A is the Lebesgue measure on [0, 1]. As
R(H. X A)=Z = R(7: X A) this contradicts (A).

COROLLARY 3.9. Let u and o be the two non-atomic vector measures. Then
the following conditions are equivalent.

(3.10) R()=Rn(0)  foreverym =1,
(3.11) R(u)=Ri(c)  forsomek =3,
(3.12) Ri(p) = Rs(0),

(3.13) T = 7o

Proor. The implication (3.10) = (3.11) is trivial. For (3.11) = (3.12) observe
that if Ri.i(n)=Rii(0o) then Ri(p)= Re(o). (3.12) = (3.13) was actually
proved in (A) = (D) of Lemma 3.8 and (3.13) = (3.10) was proved in (D) >
(A) of Lemma 3.8.

4. Decompositions of sums of countable many one-dimensional zonoids

Every convergent countable sum of closed intervals containing 0 is a zonoid;
this class of zonoids is denoted by %..

THEOREM 4.1. The following conditions on a zonoid Z are equivalent:
(4.2) Ze &,
4.3) Z=aZ+(1—-a)Z 0=a =1, isa zonoid decomposition of Z

w.r.1. any non-atomic vector measure with range Z.
THEOREM 4.4. The following conditions on a zonoid Z are equivalent:
4.5) ZeF.NF,
any zonoid decomposition Z = Z, + Z, is a decomposition

(4.6) : :
w.r.t. any non-atomic vector measure with range Z.

LemMma 4.7. The following conditions on a zonoid Z are equivalent:

42) ZEeZ,
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(4.8) Z = Z(m) for some purely atomic standard measure 7,
4.9) every standard measure 1) with Z(n) = Z is purely atomic.

PrOOF. (4.2) = (4.8). Observe that if 0€[x,y]={tx+(1—-1)y:0=t=1}
where x,y € R" then [x,y] =[0,x] +[0, y] and thus if Z € %,, Z is of the form
2 a0, x] with @ >0, x, €S"™" and Zi.,a <». Let 7, be the standard
measure supported on {x;} with n({x;})=a.. Then Z(n:)= [0, x;] and by
putting n =, 7, 7 is purely atomic and Z(n)=37., Z(n)=Z

4.8) = (4.9). If Z(n,) = Z(n,) then 7 = 53, but 7, is purely atomic iff n{ is
purely atomic. The implications (4.9) = (4.8) = (4.2) are obvious.

Lemma 4.10. Let (X,2,u) be a non-atomic vector measure space, with
standard measure n, which is purely atomic. Then for any two standard measures
N, N2 With 1+ 02= N, Z(M) =R (1) = Z(n,) + Z(7,) is a decomposition w.r.t.
M.

ProoF. Let {y:}i-1 be the support of n =n,, where y, €S""' and i#j >
y:# y;, and let &, = n{{y:}). Then as n, + . = n, n:({y:}) = tia; with0=¢ =1 and
{y:}r=: is a support of 7,. Therefore, Z(n.) == tai[0, yi]. Let f =du/d(|p])
and X; = f7'(y;). Then X; €X and X; N X; = whenever i# j.

By Liapounoff’s theorem there are measurable subsets Y; of X; with
u(Y:) = tp(X) = taiy;, and thus R(u, Y:) = tR(u, X;) = ta;[0, x;] and thus if
Y=ULY, R V)= R, Y:) =" ta[0,y. ] = Z(n)).

ProoOF OF THEOREM 4.1. (4.2) = (4.3). Let (X,2, u) be a vector measure
space with range ®(u) in %,. Let 7, be the standard measure associated to u.
By Lemma 4.7, 7, is purely atomic. Let 0=a =1 and let 7, = an,. Then
Z(n)=aZ(n,) and mn.+m-o=mn.. Thus by Lemma 4.10, R(u)=
aZ(n.)+(1—a)Z(n,.) is a decomposition w.r.t. u.

(4.3) > (4.2). By contradiction. Let Z be a zonoid, Z & %,. Let M(Z) be the
set of all standard measures n with Z(n) = Z. Theorem 4.2 of [1] implies the
existence of a constant p(Z) for which n(S$"™') = p(Z) whenever n € M(Z).
Therefore M(Z) is a bounded subset of C(S"')*. It is easy to verify that M(Z)
is a closed subset of C(S"7')* in the weak*-topology. Thus, Alaoglu’s theorem
([5], 3.15) implies that M(Z) is a compact subset of C(S""')*. Obviously M(Z) s
also convex and therefore by the Krien-Milman theorem ([5], 3.21) M(Z) has an
extreme point. Let n be an extreme point of M(Z). By Lemma 4.7, 7 is not
purely atomic. Let = n, + 7, be a decomposition of 7 into a purely atomic part
7. and a non-atomic part 1, and "' = S(n,) U S(n.) a disjoint decomposition
of $"°' as the union of a support S(n.) of , and S(7,) of n.. Let (X, 2, u,) be
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the (product) non-atomic vector measure space (S(m.), B, %)% ([0,1], B, 7).
Observe that (du./d | u1])(x, t) = x and that the standard measure associated to
w1 is m;. Let (X2, 3, w2) be the non-atomic vector measure space (S(72), B, 1.).
Observe that (du./d | u2|)(x) = x and that the standard measure associated to u.,
is m2. Let (X, 2, u) be the disjoint sum of the two non-atomic vector measure
spaces (X;,3;, ), i =1,2. That is, X=X, UX, and for ACX, A€ZX iff
ANX €3, i=1,2 and then pu(A)= u,(A N X))+ p(A N X;). Observe that
7 is the standard measure.associated to (X, 2, u). Let Y €3 with R(u, Y)=1Z.
Denote Y; = YN X, i = 1,2 and identify Y, as a subset of S(n,). Let 7 be the
vector measure u restricted to (Y, %y ). Observe that | 7| is the restriction of | u |
to Y, and that g = dr/d| 7| is the restriction of f =du/d|p|to Y. Let o be the
standard measure associated to (Y,3y,7). Then for measurable A CY,,
aA)=|7] € 'A)=|7](A)=|u|(f'(A)=7n(A) and for measurable
ACSM)\Y:, a(A)=]|7|(g"'(A)=|7](A)=0. Therefore if n,#0 then
20# 7.

For measurable ACS""', o(A)=|7|(g”'(QA)=|7|(f'(A)NY)=
|w]ef'(A)=mn(A). Therefore n — o is a standard measure and Z(n — o)+
Z(ag)=Z(n). On the other hand, as Z(c)= R(u, Y)=1Z Z(o)+Z(o)=
Z(n) and thus Z(n — o) = Z(a). Therefore, 29 —20 € M(Z) and 20 € M(Z).
As 7 is an extreme point in M(Z), 20 = n which contradicts the inequality
20 # 1.

PROOF OF THEOREM 4.4. (4.5) > (4.6). Let Z€ %, N F,, and let (X,3, u) be a
vector measure space with range R(u) = Z. Let 7, be the standard measure
associated to n. Let Z = Z, + Z, be a zonoid decomposition and let 0, 7, be two
standard measures with Z; = Z(%;), i =1,2. Then Z(m: + )= Z(m)+ Z(m2) =
Z=2Z(n,). As Z € %,, Z is definite by Lemma 3.6 and therefore 1, = n:+ 1,
and thus by Lemma 4.10, Z = Z, + Z, is a decomposition of Z w.r.t. u.

(4.6) > (4.5). Follows by the implication (4.3) = (4.2) of Theorem 4.1, and
(B) = (C) of Theorem 1.

ACKNOWLEDGEMENT

I would like to thank Dov Samet for his helpful editorial remarks.

REFERENCES

1. E. Bolker, A class of convex bodies, Trans. Amer. Math. Soc. 145 (1969), 323-345.
2. G. Choquet, Mesures coniques et affines invariants par isometries, zonoforms, zonoedres et
fonctions de type negatif, C.R. Acad. Sci. Paris 266 (1968), 619-621.



64 A. NEYMAN Israel J. Math.

3. A.Dvoretzky, A. Wald and J. Wolfowitz, Relations among certain ranges of vector measures,
Pacific J. Math. 1 (1951), 59-74.

4. N. W. Rickert, The range of a measure, Bull. Amer. Math. Soc. 73 (1967), 560-563.

5. W. Rudin, Functional Analysis, McGraw-Hill, Inc., 1973.

THE INSTITUTE FOR ADVANCED STUDIES
THE HEBREW UNIVERSITY OF JERUSALEM
MouNT Scorus, JERUSALEM, ISRAEL
AND
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CALIFORNIA, USA



