DECOMPOSITION OF RANGES OF VECTOR MEASURES

BY

ABRAHAM NEYMAN'

ABSTRACT

The following conditions on a zonoid Z, i.e., a range of a non-atomic vector measure, are equivalent: (i) the extreme set containing 0 in its relative interior is a parallelepiped; (ii) the zonoid Z determines the *m*-range of any non-atomic vector measure with range Z, where the *m*-range of a vector measure μ is the set of *m*-tuples ($\mu(S_1), \dots, \mu(S_m)$), where S_1, \dots, S_m are disjoint measurable sets; and (iii) there is a vector measure space (X, Σ, μ) such that any finite factorization of Z, $Z = \Sigma Z_i$, in the class of zonoids could be achieved by decomposing (X, Σ) . In the case of ranges of non-atomic probability measures (i) is automatically satisfied, so (ii) and (iii) hold.

1. Introduction

Let Σ be a σ -field of subsets of a set X and $\mu : \Sigma \to R^n$ be countably additive. Such a μ is called a vector measure; μ is non-atomic if $\mu(E) \neq 0$ implies the existence of an $F \subseteq E$ with $0 \neq \mu(F)$ and $\mu(F) \neq \mu(E)$. A zonoid is the range $\Re(\mu) = \{\mu(E) \mid E \in \Sigma\}$ of a non-atomic vector measure μ . Write \mathcal{F} for the set of zonoids. Lyapunov's theorem asserts that $\mathcal{F} \subset \mathcal{X}$, where \mathcal{X} is the class of all convex compact subsets of R^n which contain 0.

The decomposition *m*-range $\mathscr{R}_m(\mu)$ of the vector measure μ is defined to be the family of *m n*-dimensional vectors

$$\mathcal{R}_m(\mu) = \left\{ (\mu(S_1), \cdots, \mu(S_m)) \colon \bigcup_{i=1}^m S_i = X, S_i \in \Sigma, S_i \cap S_j = \emptyset \text{ for } i \neq j \right\}.$$

Let $Z \in \mathcal{F}$ and let μ be a non-atomic vector measure with $\mathcal{R}(\mu) = Z$. We say that $Z = Z_1 + Z_2$ is a zonoid decomposition of $Z = \mathcal{R}(\mu)$ if $Z_1, Z_2 \in \mathcal{F}$. It is a zonoid decomposition with respect to μ if there is S in Σ such that $Z_1 = \mathcal{R}(\mu, S) =$ $\{\mu(E) \mid E \in \Sigma, E \subset S\}$. Observe that then also $Z_2 = \mathcal{R}(\mu, S^c)$ where $S^c = X \setminus S$.

Partially supported by NSF grant MCS-79-06634. Received June 2, 1980

VECTOR MEASURES

A compact convex subset E of a compact convex set K is an extreme set of K if $\alpha x + (1 - \alpha)y \in E$ and $0 < \alpha < 1$, $x, y \in K$ imply that $x \in E$. For every $x \in K \in \mathcal{X}$ there is a unique extreme set E of K containing x in its relative interior. The set of extreme points of a compact convex set K is denoted by ext K.

THEOREM I. The following conditions on a zonoid Z are equivalent.

(A) For every two non-atomic vector measures μ and σ , with $\Re(\mu) = \Re(\sigma) = Z$, $\Re_m(\mu) = \Re_m(\sigma)$ for every $m \ge 1$.

(B) There is a vector measure space (X, Σ, μ) with $\Re(\mu) = Z$, such that any zonoid decomposition $Z = Z_1 + Z_2$ is a decomposition with respect to μ .

(C) The extreme set of Z containing 0 in its relative interior is a parallelepiped.

In Section 2 we define a definite zonoid.

The proof of Theorem I is accomplished (in Section 3) by proving that each of the three conditions, (A), (B) and (C), is equivalent to a fourth one, (D) - Z is a definite zonoid.

Along the proof of Theorem I we obtain some results which might have independent interest. In Section 4 we study decompositions of sums of countable many one-dimensional zonoids.

2. The standard measure

In this section we sketch briefly the relation between the range of a vector measure and the distribution of the Radon-Nikodym derivatives of its components. A more detailed account is given in Bolker [1], where additional results and references are given.

Let (X, Σ, μ) be a vector measure space; $\mu : \Sigma \to R^n$. Let $\|\mu\|_2$, or $|\mu|$ for short, be the total variation of μ with respect to the Euclidean norm, i.e., $|\mu|$ is the scalar measure on (X, Σ) given by

$$\|\mu\|(S) = \sup \sum_{i=1}^{n} \|\mu(T_i)\|_2,$$

where the sup is taken over all measurable partitions $(T_i)_{i=1}^n$ of X, i.e., $T_i \in \Sigma$, $T_i \cap T_j = \emptyset$, for $1 \le i < j \le n$ and $\bigcup_{i=1}^n T_i = X$.

Let f be the Radon-Nikodym derivative of μ with respect to $|\mu|$. Then $f: X \to S^{n-1}$, $|\mu|$ -almost everywhere. Denote by η_{μ} the measure $|\mu| \circ f^{-1}$ on (S^{n-1}, \mathcal{B}) where \mathcal{B} denotes the Borel subsets of S^{n-1} . A positive scalar measure η on S^{n-1} will be called a *standard measure*. Every standard measure η induces a vector measure $\tilde{\eta}$ on S^{n-1} given by $\tilde{\eta}(A) = \int_A u d\eta(u)$ for every $A \in \mathcal{B}$. The

vector measure $\tilde{\eta}$ is non-atomic if and only if η is non-atomic. The convex hull of the range of a vector measure is the range of a non-atomic vector measure, and thus the convex hull of $\Re(\tilde{\eta})$, which will be denoted by $Z(\eta)$, is a zonoid. If η is a measure on \mathbb{R}^n with $\int ||x|| d\eta(x) < \infty$, $Z(\eta)$ is similarly defined. If η_1, η_2 are two standard measures then $Z(\eta_1 + \eta_2) = Z(\eta_1) + Z(\eta_2)$. The support function $H(K, \cdot)$ of a convex set K is defined for $\xi \in \mathbb{R}^n$ by $H(K, \xi) =$ $\sup\{\langle x, \xi \rangle \mid x \in K\}$, where $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathbb{R}^n . If η is the standard measure associated to the non-atomic vector measure, then for every $A \in \Re \int_A u \cdot d\eta(u) = \mu(f^{-1}(A))$, and thus $\Re(\mu) \supset \Re(\tilde{\eta})$. On the other hand, $H(\Re(\mu), \xi) = \langle \mu(A(\xi)), \xi \rangle$, where $A(\xi) = \{x \in X \mid \langle f(x), \xi \rangle \ge 0\} = f^{-1}(H_{\epsilon})$, where $H_{\epsilon} = \{u \in S^{n-1} \mid \langle u, \xi \rangle \ge 0\}$, and thus $Z(\eta) \supset \Re(\mu)$. As $\Re(\mu)$ is convex, and $\Re(\tilde{\eta})$ closed, $Z(\eta) = \Re(\mu)$. Thus every zonoid is of the form $Z(\eta)$ for some standard measure η . If η is a standard measure we define the standard measure η^s on S^{n-1} by $\eta^s(E) = (\eta(E) + \eta(-E))/2$.

LEMMA 2.1. ([4, theorem 2], [2, theorem 22], [1, corollary 2.9]). $Z(\eta_1)$ is a translate of $Z(\eta_2)$ if and only if $\eta_1^s = \eta_2^s$.

A zonoid Z is called a *definite zonoid* if it uniquely determines its standard measure, i.e., for any two standard measures η_1 and η_2 with $Z(\eta_1) = Z = Z(\eta_2)$, $\eta_1 = \eta_2$.

3. The proof of Theorem 1

We will prove that each of the conditions (A), (B), (C) is equivalent to (D)-Z is definite.

LEMMA 3.1. Let Z be a definite zonoid, 0 the center of symmetry of Z. Then Z is a parallelepiped.

PROOF. Let $Z = Z(\mu)$. If μ^* denotes the standard measure given by $\mu^*(E) = \mu(-E)$ then $Z(\mu^*) = -Z(\mu)$. As 0 is the center of symmetry of $Z(\mu)$, $Z(\mu^*) = -Z(\mu) = Z(\mu)$ and thus $Z(\mu^s) = Z(\mu)$, but Z is definite and therefore $\mu = \mu^s$.

Let $T: L_{\infty}(\mu) \to R^n$ be the linear transformation defined by $Tf = \int_{S^{n-1}} f(u) u d\mu(u)$.

Let W be the subspace of $L_{\infty}(\mu)$ of all anti-symmetric functions, i.e., $f(x) = -f(-x) \mu$ -almost everywhere.

Assume first that dim W > n. Then, there is $f \in W$, $0 < ||f||_{\infty} < 1$, such that Tf = 0, i.e., $\int f(x)xd\mu(x) = 0$. Let η be the measure on S^{n-1} which is absolutely

VECTOR MEASURES

continuous with respect to μ , with $d\eta/d\mu = 1 - f$. As $||f||_{\infty} < 1$, η is a standard measure, and as $||f|| \neq 0$, $\eta \neq \mu$. As f is anti-symmetric it follows that for every $A \in \mathcal{B}$, $\eta(A \cup -A) = \mu(A \cup -A)$ and therefore by Lemma 2.1, $Z(\eta)$ is a translate of $Z(\mu)$. In order to show that $Z(\eta) = Z(\mu)$ we have to show that both have the same center of symmetry, i.e., to show that $\tilde{\eta}(S^{n-1}) = \tilde{\mu}(S^{n-1})$. But

$$\tilde{\eta}(S^{n-1}) = \int (1-f)(x) x d\mu(x) = \tilde{\mu}(S^{n-1}) \to \int f(x) x d\mu(x) \tilde{\mu}(S^{n-1}) = \tilde{\mu}(S^{n-1})$$

and thus $Z(\eta) = Z(\mu)$. Therefore if Z is a definite zonoid, dim $W \le n$. However, dim $W \le n$ iff there is a finite set A with $\#A \le n$, such that $A \cup -A$ is a support of μ . Without loss of generality we could assume that dim Z = n which implies that the set A consists of linearly independent vectors, i.e., $Z(\mu)$ is a sum of linearly independent line segments — a parallelepiped.

LEMMA 3.2. Every zonoid Z has a decomposition of the form $Z = Z_1 + Z_2$ where 0 is the center of symmetry of Z_1 and an extreme point of Z_2 .

PROOF. Let $Z = Z(\mu)$ where μ is a standard measure, $v = \int xd\mu(x)$. Denote by W' the set W' = $\{f \in L_{\infty}(\mu) \mid 0 \leq f \leq 1, \int f(x)xd\mu(x) = v\}$, i.e., in the notations of the previous lemma, $W' = T^{-1}(v) \cap \{f \in L_{\infty}(\mu) \mid 0 \leq f \leq 1\}$. Thus W' is convex and compact, and if $f_n \in W'$, $f_{n+1} \leq f_n$ and $\lim f_n = f$ then by the Lebesgue dominated convergence theorem $f \in W'$. Using Zorn's lemma we deduce the existence of $\overline{f} \in W'$ such that there is no $g \in W'$ with $g \leq \overline{f}, g \neq \overline{f}$. Let μ_1 be the standard measure whose Radon-Nikodym derivative with respect to μ is \overline{f} , and $\mu_2 = \mu - \mu_1$. Then $Z(\mu) = Z(\mu_1) + Z(\mu_2)$. First we claim that $0 \in \operatorname{ext} Z(\mu_1)$. Otherwise there is $0 \leq g_1, g_2 \leq \overline{f}$ such that $0 \neq \int g_1(x)xd\mu(x) = -\int g_2(x)xd\mu(x)$. Let $f' = \overline{f} - (g_1 + g_2)/2$. Then f' < f, and $f' \in W'$. Thus $0 \in \operatorname{ext} Z(\mu_1)$. As $\overline{f} \in W'$, $\overline{\mu_1}(S^{n-1}) = v$ and thus $\overline{\mu_2}(S^{n-1}) = v - v = 0$, which proves that 0 is the center of symmetry of Z_2 .

LEMMA 3.3. Let 0 be an extreme point of a zonoid Z. Then Z is definite.

PROOF. By induction on dim Z. Assume η_1 and η_2 are two standard measures with $Z = Z(\eta_1) = Z(\eta_2)$. We have to prove that $\eta_1 = \eta_2$. If dim Z = 1, this is obvious. Let dim Z > 1. As 0 is an extreme point of Z, there is $\xi \in \mathbb{R}^n$ for which $\langle x, \xi \rangle \leq 0$ for every $x \in Z$, and dim $F(Z, \xi) < \dim Z$ where $F(Z, \xi)$ is the corresponding face, i.e., $F(Z, \xi) = \{x \in Z \mid \langle x, \xi \rangle = H(Z, \xi) = 0\}$. Then H_{ξ} is a support for η_i . If we denote by $\bar{\eta}_i$, i = 1, 2, the standard measure η_i restricted to $\xi^{\perp} = \{x \in \mathbb{R}^n \mid \langle x, \xi \rangle = 0\}$, then $F(Z, \xi) = Z(\bar{\eta}_i)$. By the induction hypothesis $\bar{\eta}_1 = \bar{\eta}_2$. Let $\sigma_i = \eta_i - \bar{\eta}_i$, i = 1, 2. Then as $Z(\eta_i) = Z(\bar{\eta}_i) + Z(\sigma_i)$ we conclude that $Z(\sigma_1) = Z(\sigma_2)$. Thus, by Lemma 2.1, $\sigma_1^s = \sigma_2^s$. As $H_{\ell}^0 = H_{\ell}^0 \langle \xi^{\perp}$ is a support of both σ_1 and σ_2 and as $H_{\ell}^0 \cap -H_{\ell}^0 = \emptyset$ we conclude that $\sigma_1 = \sigma_2$ and thus $\eta_1 = \eta_2$.

Two sets $K_1, K_2 \in K$ are independent if $\dim(K_1 + K_2) = \dim K_1 + \dim K_2$, where $\dim K$ (for $K \in \mathcal{X}$) is the dimension of the minimal subspace containing K.

LEMMA 3.4. If Z_1 and Z_2 are two independent definite zonoids then $Z_1 + Z_2$ is definite.

PROOF. Let η , η_1 , η_2 be standard measures with $Z(\eta) = Z(\eta_1) + Z(\eta_2)$ and $Z(\eta_i) = Z_i$, i = 1, 2. Then $Z(\eta^s) = Z(\eta^s_1) + Z(\eta^s_2) = Z(\eta^s_1 + \eta^s_2)$ and thus by Lemma 2.1, $\eta^s = \eta^s_1 + \eta^s_2$. Let V_i , i = 1, 2, be the minimal subspace of \mathbb{R}^n which contains Z_i . As Z_1 and Z_2 are independent, $V_1 \cap V_2 = \{0\}$ and thus $V_1 \cap V_2 \cap S^{n-1} = \emptyset$. As V_i is a subspace containing Z_i , i = 1, 2, it follows that $V_i \cap S^{n-1}$ is a support for η_i , and thus $(V_1 \cup V_2) \cap S^{n-1}$ is a support for $\eta^s = \eta^s_1 + \eta^s_2$. Let $\bar{\eta}_i$ be the restriction of η to $V_i \cap S^{n-1}$, i = 1, 2. It is enough to prove that $\bar{\eta}_i = \eta_i$. Obviously, $\bar{\eta}^s_i = \eta^s_i$ and thus by Lemma 2.1 $Z(\bar{\eta}_i) = Z(\eta_i) + X_i$, i = 1, 2. As $Z(\bar{\eta}_i) - Z(\eta_i) \subset V_i$, $X_i \in V_i$. However

$$Z(\eta) = Z(\eta_1) + Z(\eta_2) = Z(\bar{\eta}_1) + Z(\bar{\eta}_2)$$
$$= X_1 + X_2 + Z(\eta_1) + Z(\eta_2) = (X_1 + X_2) + Z(\eta).$$

Therefore $X_1 + X_2 = 0$. But $\dim(V_1 + V_2) = \dim V_1 + \dim V_2$ and therefore $X_1 + X_2 = 0$ implies that $X_1 = 0 = X_2$. Thus $Z(\tilde{\eta}_i) = Z(\eta_i)$. As $Z(\eta_i)$ is definite, $\tilde{\eta}_i = \eta_i$.

COROLLARY 3.5. Every parallelepiped containing 0 is a definite zonoid.

PROOF. Every one-dimensional zonoid is definite and a parallelepiped containing 0 is an independent sum of one-dimensional zonoids.

The class of zonoids obeying condition (C) of Theorem 1 will be denoted \mathcal{F}_0 .

LEMMA 3.6. (D) \Leftrightarrow (C).

PROOF. (C) \Rightarrow (D). Let Z be a zonoid in \mathscr{F}_0 . We will prove that Z is definite by induction on dim $Z - \dim F(0)$ where F(0) is the (unique) extreme set of Z containing 0 in its relative interior. Without loss of generality (w.l.o.g.) dim Z =*n*. If dim $Z - \dim F(0) = 0$, then 0 is in the relative interior of Z, and as $Z \in \mathscr{F}_0$, it means that Z is a parallelepiped which is definite by Corollary 3.5. If dim $Z - \dim F(0) \ge 1$, there is $\xi \in \mathbb{R}^n$ such that

$$0 \in F(Z,\xi) = \{v \in Z \mid \langle v, \xi \rangle = \max\{\langle x, \xi \rangle \mid x \in Z\}.$$

As $F(Z, \xi)$ is an extreme set of Z, it follows that $F(0) \subset F(Z, \xi)$. Let $Z = Z(\mu)$, and let μ_1 be the standard measure μ restricted to $\xi^{\perp} \equiv \langle x \in \mathbb{R}^n | \langle x, \xi \rangle = 0 \rangle$, and let $\mu_2 = \mu - \mu_1$. Then, $0 \in \operatorname{ext} Z(\mu_2)$ and $F(Z, \xi) = Z(\mu_1)$.

By Lemma 3.3, $Z(\mu_2)$ is definite, and by the induction hypothesis $Z(\mu_1)$ is definite. Thus for any standard measure σ with $Z(\sigma) = Z$, if σ_1 denotes the standard measure σ restricted to ξ^{\perp} , $Z(\sigma_1) = F(Z, \xi) = Z(\mu_1)$ and thus $\sigma_1 = \mu_1$, and $Z(\sigma - \sigma_1) = Z(\mu_2)$ and thus $\sigma - \sigma_1 = \mu_2$ which, together with $\sigma_1 = \mu_1$, implies that $\sigma = \mu$, i.e., that Z is definite. This proves that (C) \Rightarrow (D).

(D) \Rightarrow (C). Assume that Z is definite. W.l.o.g. dim Z = n. First assume that 0 is in the relative interior of Z, i.e., that F(0) = Z. By Lemma 3.2, there is a zonoid decomposition $Z = Z_1 + Z_2$ where $0 \in \text{ext } Z_1$, and 0 is the center of symmetry of Z_2 . Obviously, if Z is definite then Z_2 is definite and thus, by Lemma 3.1, Z_2 is a parallelepiped. As $0 \in \text{ext } Z_2$, and 0 is in the relative interior of Z_1 , it follows that dim $F(0) = \dim Z_1$ and therefore dim $Z_1 = n$. Let x_1, \dots, x_n S^{n-1} such that A =be n linearly independent vectors in $\{x_1, \dots, x_n\} \cup \{-x_1, \dots, -x_n\}$ is a support of μ_2 where $Z_2 = Z(\mu_2)$. As 0 is the center of symmetry of $Z_2, \mu_2(\lbrace x_i \rbrace) = \mu_2(\lbrace -x_i \rbrace) > 0$. Let $Z_1 = Z(\mu_1)$. In order to prove that $Z_1 + Z_2$ is a parallelepiped it is enough to show that A is a support of μ_1 . Otherwise, there is $B \in \mathcal{B}$ such that $B \cap A = \emptyset$, $B \cap -B = \emptyset$ and $\tilde{\mu}_1(B) \neq 0$. As x_1, \dots, x_n are linearly independent, there is a linear combination $\sum \alpha_i x_i = \tilde{\mu}_1(B)$. Let $0 < \beta \le 1$ be such that $|\beta \alpha_i| \le \mu_2(\{x_i\})$. Let μ_4 be the standard measure supported on A and given by

$$\mu_4(\{-x_i\}) - \beta \alpha_i = \mu_2(\{-x_i\}) = \mu_2(\{x_i\}) = \mu_4(\{x_i\}) + \beta \alpha_i.$$

Let μ_3 be the standard measure given by

$$\mu_3(E) = \mu_1(E) - \beta \cdot \mu_1(E \cap B) + \beta \mu_1(-E \cap B).$$

Observe that $\sigma = \mu_3 + \mu_4$ is a standard measure, and that $\sigma \neq \mu$. It could be easily verified that for every $E \in \mathcal{B}$, $\sigma(E \cup -E) = \mu(E \cup -E)$ and that $\tilde{\sigma}(S^{n-1}) = \tilde{\mu}(S^{n-1})$ and therefore $Z(\sigma) = Z(\mu)$. Thus by contradiction A is a support for μ_1 , which completes the proof in the case Z = F(0). Otherwise, $0 \in \text{ext } Z$, and thus there is $\xi \in R$ such that $0 \in F(Z, \xi)$. Let $Z = Z(\mu)$ and let μ_1 be the standard measure μ restricted to ξ^{\perp} . Then $Z(\mu_1)$ is definite and thus by the induction hypothesis, the extreme set of $F(Z, \xi)$ containing 0 in its relative interior is a parallelepiped. This completes the proof of Lemma 3.6.

Lemma 3.7. (D) \Leftrightarrow (B).

PROOF. (D) \Rightarrow (B). Let Z be a definite zonoid and let $Z = Z(\eta)$ where η is a

A. NEYMAN

standard measure. Let (X, Σ, μ) be the product vector measure space $(S^{n-1}, \mathcal{B}, \tilde{\eta}) \times ([0, 1], \mathcal{B}, \lambda)$ where λ is Lebesgue measure on $([0, 1], \mathcal{B})$. Let $Z = Z_1 + Z_2$ be a zonoid decomposition of Z. Let $Z_1 = Z(\eta_1), Z_2 = Z(\eta_2)$ where η_1 and η_2 are standard measures. Then $Z(\eta) = Z = Z_1 + Z_2 = Z(\eta_1) + Z(\eta_2) = Z(\eta_1 + \eta_2)$ and as Z is definite, $\eta = \eta_1 + \eta_2$. Let f_1 be the Radon-Nikodym derivative of η_1 with respect to η ; then $0 \le f \le 1$. Let $S = \{(u, t) \mid u \in S^{n-1}, 0 \le t \le f(u)\}$, then S is measurable and $\mathcal{R}(\mu, S) = Z(\eta_1)$, which completes the proof that $(D) \Rightarrow (B)$.

(B) \Rightarrow (D). By contradiction. Assume that Z is not a definite zonoid. Let (X, Σ, μ) be a non-atomic vector measure with $\Re(\mu) = Z$. Let η_{μ} be the standard measure associated to μ ; and let η be a standard measure with $\eta \neq \eta_{\mu}$ and $Z(\eta) = Z = Z(\eta_{\mu})$. As $\eta \neq \eta_{\mu}$, there are $\xi \in \mathbb{R}^n$, $\alpha > 0$ for which $(\eta - \eta_{\mu})$ $(\{u \in S^{n-1} \mid \langle u, \xi \rangle \ge \alpha\}) > 0$. Let $A = \{v \in S^{n-1} \mid \langle v, \xi \rangle \ge \alpha\}$, and let η_1 be the standard measure η restricted to A. Then $Z = Z(\eta_1) + Z(\eta - \eta_1)$. Assume that there is $S \in \Sigma$ with $\Re(\mu, S) = Z(\eta_1)$. Obviously the standard measure η' associated to $\mu_{|s}$ obeys $\eta'(A) \le \eta_{\mu}(A)$. However, 0 is an extreme point of $Z(\eta_1)$ and thus $\eta_1 = \eta'$, which contradicts the inequalities $\eta'(A) \le \eta_{\mu}(A) < \eta_1(A)$.

LEMMA 3.8. (D) \Leftrightarrow (A).

PROOF. (D) \Rightarrow (A). Let Z be a definite zonoid and let μ, σ be two nonatomic vector measures on the measurable spaces $(X_1, \Sigma_1), (X_2, \Sigma_2)$, respectively. Let $(x_1, \dots, x_m) \in \mathcal{R}_m(\mu)$ and let $(E_i)_{i=1}^m$ be a measurable partition of X_1 (i.e., $E_i \in \Sigma_1, i \neq j \Rightarrow E_i \cap E_j = \emptyset, \bigcup_{i=1}^n E_i = X_1$) with $\mu(E_i) = x_i$. Let η be the standard measure with $Z(\eta) = \mathcal{R}(\mu)$ and let η_i be the standard measure associated to the vector measure μ restricted to E_i . Then $\sum_{i=1}^m \eta_i = \eta$. Let f_i , $1 \leq i \leq m$, be the Radon-Nikodym derivative of η_i with respect to η . Let g be the Radon-Nikodym derivative of σ with respect to $|\sigma|$, and let $\overline{f_i} = f_i \circ g$. Then $0 \leq \overline{f_i} \leq 1, \sum_{i=1}^m \overline{f_i} \leq 1$, and $\int \overline{f_i} d\sigma = \int f_i(v) v d\eta = X_i$. By [3, theorem 4], there is a measurable partition $(S_i)_{i=1}^m$ of (X_2, Σ_2) for which $\sigma(S_i) = x_i$. Therefore $(x_1, \dots, x_m) \in \mathcal{R}_m(\sigma)$ which completes the implication (D) \Rightarrow (A).

(A) \Rightarrow (D). By contradiction. Assume that Z is not definite. Let η_1, η_2 be two different standard measures with $Z(\eta_1) = Z = Z(\eta_2)$. Let $\xi \in Z$ be given by $\|\xi\| = \max\{\|x\| : x \in Z\}$. Then, $F(Z, \xi) = \{\xi\}$ and thus both η_1 and η_2 are supported on $S^{n-1} \setminus \xi^{\perp}$ and $\xi = \int_{H_{\xi}^{\perp}} u d\eta_i(u)$, i = 1, 2. Let $\bar{\eta}_i$ be the standard measure η_i restricted to H_{ξ}^{\perp} . As $Z(\eta_1) = Z(\eta_2)$, $\eta_1^s = \eta_2^s$ (Lemma 2.1) and therefore if $\eta_1 \neq \eta_2$ then also $\bar{\eta}_1 \neq \bar{\eta}_2$. But $0 \in \operatorname{ext} Z(\bar{\eta}_1)$ and thus $Z(\bar{\eta}_1) \neq Z(\bar{\eta}_2)$. Without loss of generality there is $x \in Z(\bar{\eta}_i) \setminus Z(\bar{\eta}_2)$. Let y be the center of symmetry of Z, i.e., $2y = \tilde{\eta}_i (S^{n-1})$. Then the vector $(x, \xi - x, 2y - \xi)$ is in $\Re_3(\tilde{\eta}_1 \times \lambda)$ but not in $\Re_3(\tilde{\eta}_2 \times \lambda)$, where λ is the Lebesgue measure on [0, 1]. As $\Re(\tilde{\eta}_2 \times \lambda) = Z = \Re(\tilde{\eta}_1 \times \lambda)$ this contradicts (A).

COROLLARY 3.9. Let μ and σ be the two non-atomic vector measures. Then the following conditions are equivalent.

- (3.10) $\mathscr{R}_m(\mu) = \mathscr{R}_m(\sigma) \quad \text{for every } m \ge 1,$
- (3.11) $\Re_k(\mu) = \Re_k(\sigma)$ for some $k \ge 3$,

$$(3.12) \qquad \qquad \mathcal{R}_3(\mu) = \mathcal{R}_3(\sigma),$$

$$(3.13) \eta_{\mu} = \eta_{\sigma}.$$

PROOF. The implication $(3.10) \Rightarrow (3.11)$ is trivial. For $(3.11) \Rightarrow (3.12)$ observe that if $\mathcal{R}_{k+1}(\mu) = \mathcal{R}_{k+1}(\sigma)$ then $\mathcal{R}_k(\mu) = \mathcal{R}_k(\sigma)$. $(3.12) \Rightarrow (3.13)$ was actually proved in (A) \Rightarrow (D) of Lemma 3.8 and $(3.13) \Rightarrow (3.10)$ was proved in (D) \Rightarrow (A) of Lemma 3.8.

4. Decompositions of sums of countable many one-dimensional zonoids

Every convergent countable sum of closed intervals containing 0 is a zonoid; this class of zonoids is denoted by \mathcal{F}_a .

THEOREM 4.1. The following conditions on a zonoid Z are equivalent:

(4.3) $Z = \alpha Z + (1 - \alpha)Z, 0 \le \alpha \le 1$, is a zonoid decomposition of Z w.r.t. any non-atomic vector measure with range Z.

THEOREM 4.4. The following conditions on a zonoid Z are equivalent:

any zonoid decomposition $Z = Z_1 + Z_2$ is a decomposition

(4.6) w.r.t. any non-atomic vector measure with range Z.

LEMMA 4.7. The following conditions on a zonoid Z are equivalent:

(4.8) $Z = Z(\eta)$ for some purely atomic standard measure η ,

(4.9) every standard measure η with $Z(\eta) = Z$ is purely atomic.

PROOF. (4.2) \Rightarrow (4.8). Observe that if $0 \in [x, y] = \{tx + (1-t)y : 0 \le t \le 1\}$ where $x, y \in \mathbb{R}^n$ then [x, y] = [0, x] + [0, y] and thus if $Z \in \mathcal{F}_a$, Z is of the form $\sum_{i=1}^{\infty} \alpha_i[0, x_i]$ with $\alpha_i > 0$, $x_i \in S^{n-1}$ and $\sum_{i=1}^{\infty} \alpha_i < \infty$. Let η_i be the standard measure supported on $\{x_i\}$ with $\eta_i(\{x_i\}) = \alpha_i$. Then $Z(\eta_i) = \alpha_i[0, x_i]$ and by putting $\eta = \sum_{i=1}^{\infty} \eta_i$, η is purely atomic and $Z(\eta) = \sum_{i=1}^{\infty} Z(\eta_i) = Z$.

(4.8) \Rightarrow (4.9). If $Z(\eta_1) = Z(\eta_2)$ then $\eta_1^s = \eta_2^s$, but η_i is purely atomic iff η_1^s is purely atomic. The implications (4.9) \Rightarrow (4.8) \Rightarrow (4.2) are obvious.

LEMMA 4.10. Let (X, Σ, μ) be a non-atomic vector measure space, with standard measure η_{μ} which is purely atomic. Then for any two standard measures η_1, η_2 with $\eta_1 + \eta_2 = \eta_{\mu}, Z(\eta_{\mu}) \equiv \Re(\mu) = Z(\eta_1) + Z(\eta_2)$ is a decomposition w.r.t. μ .

PROOF. Let $\{y_i\}_{i=1}^{\infty}$ be the support of $\eta \equiv \eta_{\mu}$, where $y_i \in S^{n-1}$ and $i \neq j \Rightarrow y_i \neq y_j$, and let $\alpha_i = \eta(\{y_i\})$. Then as $\eta_1 + \eta_2 = \eta$, $\eta_1(\{y_i\}) = t_i \alpha_i$ with $0 \le t_i \le 1$ and $\{y_i\}_{i=1}^{\infty}$ is a support of η_1 . Therefore, $Z(\eta_1) = \sum_{i=1}^{\infty} t_i \alpha_i [0, y_i]$. Let $f = d\mu/d(|\mu|)$ and $X_i = f^{-1}(y_i)$. Then $X_i \in \Sigma$ and $X_i \cap X_j = \emptyset$ whenever $i \neq j$.

By Liapounoff's theorem there are measurable subsets Y_i of X_i with $\mu(Y_i) = t_i \mu(X_i) = t_i \alpha_i y_i$, and thus $\Re(\mu, Y_i) = t_i \Re(\mu, X_i) = t_i \alpha_i [0, x_i]$ and thus if $Y = \bigcup_{i=1}^{\infty} Y_i$, $\Re(\mu, Y) = \sum_{i=1}^{\infty} \Re(\mu, Y_i) = \sum_{i=1}^{\infty} t_i \alpha_i [0, y_i] = Z(\eta_i)$.

PROOF OF THEOREM 4.1. $(4.2) \Rightarrow (4.3)$. Let (X, Σ, μ) be a vector measure space with range $\Re(\mu)$ in \mathscr{F}_a . Let η_{μ} be the standard measure associated to μ . By Lemma 4.7, η_{μ} is purely atomic. Let $0 \le \alpha \le 1$ and let $\eta_{\alpha} = \alpha \eta_{\mu}$. Then $Z(\eta_{\alpha}) = \alpha Z(\eta_{\mu})$ and $\eta_{\alpha} + \eta_{1-\alpha} = \eta_{\mu}$. Thus by Lemma 4.10, $\Re(\mu) = \alpha Z(\eta_{\mu}) + (1-\alpha)Z(\eta_{\mu})$ is a decomposition w.r.t. μ .

 $(4.3) \Rightarrow (4.2)$. By contradiction. Let Z be a zonoid, $Z \notin \mathcal{F}_a$. Let M(Z) be the set of all standard measures η with $Z(\eta) = Z$. Theorem 4.2 of [1] implies the existence of a constant $\rho(Z)$ for which $\eta(S^{n-1}) \le \rho(Z)$ whenever $\eta \in M(Z)$. Therefore M(Z) is a bounded subset of $C(S^{n-1})^*$. It is easy to verify that M(Z)is a closed subset of $C(S^{n-1})^*$ in the weak*-topology. Thus, Alaoglu's theorem ([5], 3.15) implies that M(Z) is a compact subset of $C(S^{n-1})^*$. Obviously M(Z) is also convex and therefore by the Krien-Milman theorem ([5], 3.21) M(Z) has an extreme point. Let η be an extreme point of M(Z). By Lemma 4.7, η is not purely atomic. Let $\eta = \eta_1 + \eta_2$ be a decomposition of η into a purely atomic part η_1 and a non-atomic part η_2 , and $S^{n-1} = S(\eta_1) \cup S(\eta_2)$ a disjoint decomposition of S^{n-1} as the union of a support $S(\eta_1)$ of η_1 and $S(\eta_2)$ of η_2 . Let (X, Σ_1, μ_1) be the (product) non-atomic vector measure space $(S(\eta_1), \mathcal{B}, \tilde{\eta}_1) \times ([0, 1], \mathcal{B}, \lambda)$. Observe that $(d\mu_1/d | \mu_1 |)(x, t) = x$ and that the standard measure associated to μ_1 is η_1 . Let (X_2, Σ_2, μ_2) be the non-atomic vector measure space $(S(\eta_2), \mathcal{B}, \tilde{\eta}_2)$. Observe that $(d\mu_2/d | \mu_2 |)(x) = x$ and that the standard measure associated to μ_2 is η_2 . Let (X, Σ, μ) be the disjoint sum of the two non-atomic vector measure spaces (X_i, Σ_i, μ_i) , i = 1, 2. That is, $X = X_1 \cup X_2$ and for $A \subset X$, $A \in \Sigma$ iff $A \cap X_i \in \Sigma_i$, i = 1, 2 and then $\mu(A) = \mu_1(A \cap X_1) + \mu_2(A \cap X_2)$. Observe that η is the standard measure associated to (X, Σ, μ) . Let $Y \in \Sigma$ with $\mathcal{R}(\mu, Y) = \frac{1}{2}Z$. Denote $Y_i = Y \cap X_i$, i = 1, 2 and identify Y_2 as a subset of $S(\eta_2)$. Let τ be the standard measure associated to $(Y, \Sigma_{|Y})$. Observe that $|\tau|$ is the restriction of $|\mu|$ to Y, and that $g = d\tau/d | \tau |$ is the restriction of $f = d\mu/d | \mu |$ to Y. Let σ be the standard measure associated to $(Y, \Sigma_{|Y}, \tau)$. Then for measurable $A \subset Y_2$, $\sigma(A) = |\tau| (g^{-1}(A)) = |\tau|(g^{-1}(A)) = |\tau|(A) = 0$. Therefore if $\eta_2 \neq 0$ then $2\sigma \neq \eta$.

For measurable $A \subset S^{n-1}$, $\sigma(A) = |\tau| \circ (g^{-1}(A)) = |\tau| (f^{-1}(A) \cap Y) \leq |\mu| \circ f^{-1}(A) = \eta(A)$. Therefore $\eta - \sigma$ is a standard measure and $Z(\eta - \sigma) + Z(\sigma) = Z(\eta)$. On the other hand, as $Z(\sigma) = \Re(\mu, Y) = \frac{1}{2}Z$, $Z(\sigma) + Z(\sigma) = Z(\eta)$ and thus $Z(\eta - \sigma) = Z(\sigma)$. Therefore, $2\eta - 2\sigma \in M(Z)$ and $2\sigma \in M(Z)$. As η is an extreme point in M(Z), $2\sigma = \eta$ which contradicts the inequality $2\sigma \neq \eta$.

PROOF OF THEOREM 4.4. $(4.5) \Rightarrow (4.6)$. Let $Z \in \mathscr{F}_a \cap \mathscr{F}_0$, and let (X, Σ, μ) be a vector measure space with range $\mathscr{R}(\mu) = Z$. Let η_{μ} be the standard measure associated to μ . Let $Z = Z_1 + Z_2$ be a zonoid decomposition and let η_1, η_2 be two standard measures with $Z_i = Z(\eta_i)$, i = 1, 2. Then $Z(\eta_1 + \eta_2) = Z(\eta_1) + Z(\eta_2) = Z = Z(\eta_{\mu})$. As $Z \in \mathscr{F}_0$, Z is definite by Lemma 3.6 and therefore $\eta_{\mu} = \eta_1 + \eta_2$ and thus by Lemma 4.10, $Z = Z_1 + Z_2$ is a decomposition of Z w.r.t. μ .

 $(4.6) \Rightarrow (4.5)$. Follows by the implication $(4.3) \Rightarrow (4.2)$ of Theorem 4.1, and $(B) \Rightarrow (C)$ of Theorem I.

ACKNOWLEDGEMENT

I would like to thank Dov Samet for his helpful editorial remarks.

REFERENCES

1. E. Bolker, A class of convex bodies, Trans. Amer. Math. Soc. 145 (1969), 323-345.

2. G. Choquet, Mesures coniques et affines invariants par isometries, zonoforms, zonoedres et fonctions de type negatif, C.R. Acad. Sci. Paris 266 (1968), 619-621.

3. A. Dvoretzky, A. Wald and J. Wolfowitz, Relations among certain ranges of vector measures, Pacific J. Math. 1 (1951), 59-74.

4. N. W. Rickert, The range of a measure, Bull. Amer. Math. Soc. 73 (1967), 560-563.

5. W. Rudin, Functional Analysis, McGraw-Hill, Inc., 1973.

THE INSTITUTE FOR ADVANCED STUDIES

THE HEBREW UNIVERSITY OF JERUSALEM MOUNT SCOPUS, JERUSALEM, ISRAEL

AND

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALIFORNIA, BERKELEY

BERKELEY, CALIFORNIA, USA