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DECOMPOSITION OF RANGES 
OF VECTOR MEASURES 

BY 

A B R A H A M  NEYMAN ~ 

ABSTRACt 

The following conditions on a zonoid Z, i.e., a range of a non-atomic vector 
measure, are equivalent: (i) the extreme set containing 0 in its relative interior is 
a parallelepiped; (ii) the zonoid Z determines the m-range of any non-atomic 
vector measure with range Z, where the m-range of a vector measure/. t  is the 
set of m-tuples (/.t(S~),... ,/.t(S~)), where S~ , . . , ,  S,, are disjoint measurable 
sets; and (iii) there is a vector measure space (X,~ , / z )  such that any finite 
factorization of Z, Z = ~Z~, in the class of zonoids could be achieved by 
decomposing (X, ~). In the case of ranges of non-atomic probability measures (i) 
is automatically satisfied, so (ii) and (iii) hold. 

1. Introduction 

Let X be a tr-field of subsets of a set X and/z  : X--~ R"  be countably additive. 

Such a /.t is called a vector measure; i~ is non-atomic i f / ~ ( E ) # 0  implies the 

existence of an F_C E with 0 #  ~ ( F )  a n d / z ( F ) ~ / z ( E ) .  A zonoid is the range 

~(~t )  = {/x(E) I E ~ ~} of a non-atomic vector measure/z.  Write ~ for the set of 

zonoids. Lyapunov's theorem asserts that ~: C~ ,  where ~r is the class of all 

convex compact subsets of R"  which contain 0. 

The decomposition m-range ~,~ (/.~) of the vector measure /z  is defined to be 

the family of m n-dimensional vectors 

S, = X, S, e s, n s , = O f o r i , ' j } .  

Let Z E f f  and let t~ be a non-atomic vector measure with 9~(/x) = Z. We say 

that Z = Z~ + Z ,  is a zonoid decomposition of Z = 9t(/x) if Z~,ZzE ~. It is a 

zonoid decomposition with respect to/~ if there is S in ~ such that Z~ = ~(/.L, $ ) m  

{/z(E) [ E E E, E C S}. Observe that then also Z2 = ~(tz ,  S ~) where S" = X\S. 
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A compact convex subset E of a compact convex set K is an extreme set of K 

if a x + ( 1 - a ) y E E  and 0 < a < l ,  x, y E K  imply that x ~ E .  For every 

x E K E X there is a unique extreme set E of K containing x in its relative 

interior. The set of extreme points of a compact convex set K is denoted by 

ext K. 

THEOREM I. The following conditions on a zonoid Z are equivalent. 

(A) For every two non-atomic vector measures t~ and tr, with fft(l~ ) = ~l(tr) = 

Z, ~ , , ( t t  ) = ~, , ((r)  for every m >= 1. 

(B) There is a vector measure space (X, "2, t~ ) with ~ (l~ ) = Z, such that any 

zonoid decomposition Z = Z~ + Z2 is a decomposition with respect to Ix. 

(C) The extreme set of Z containing 0 in its relative interior is a parallelepiped. 

In Section 2 we define a definite zonoid. 

The proof of Theorem I is accomplished (in Section 3) by proving that each of 

the three conditions, (A), (B) and (C), is equivalent to a fourth one, ( D ) - -  Z is a 

definite zonoid. 

Along the proof of Theorem I we obtain some results which might have 

independent interest. In Section 4 we study decompositions of sums of countable 

many one-dimensional zonoids. 

2. The standard measure 

In this section we sketch briefly the relation between the range of a vector 

measure and the distribution of the Radon-Nikodym derivatives of its compo- 

nents. A more detailed account is given in Bolker [1], where additional results 
and references are given. 

Let (X,~,tx) be a vector measure space; ~ :E---~R". Let 11 1t2, or  for 
short, be the total variation of/~ with respect to the Euclidean norm, i.e., I/x I is 
the scalar measure on (X, E) given by 

Iv I(S) = sup ~ IIt~(T,)lt~, 
i = l  

where the sup is taken over all measurable partitions (Z)~'=I of X, i.e., Z ~ E, 

T, fqTj = 0 ,  for l < i < j < = n  and U~=~ T, =X.  

Let [ be the Radon-Nikodym derivative of ~ with respect to [/z I. Then 

f : X---* S "-I, I~ I-almost everywhere. Denote by ~ the measure I/x l of- '  on 

(S "-], ~ )  where ~ denotes the Borel subsets of S "-~. A positive scalar measure 

7/on S "-J will be called a standard measure. Every standard measure ~/induces a 

vector measure ~ on S "-~ given by ; q ( A ) = f a u d T i ( u  ) for every A E ~ .  The 
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vector measure ~ is non-atomic if and only if 7/is non-atomic. The convex hull 

of the range of a vector measure is the range of a non-atomic vector measure, 

and thus the convex hull of ~ (~/), which will be denoted by Z(7) ,  is a zonoid. If 

7 is a measure on R" with f[lx [IdT(x)< 0% Z ( 7 )  is similarly defined. If 71, 72 

are two standard measures then Z(71 + 72) = Z ( 7 0  + Z(72). The support func- 

tion H(K, . )  of a convex set K is defined for ~ E R  ~ by H(K,~:)= 

sup{(x, ~:)[x ~ K}, where ( - , . )  denotes the inner product in R ~. If 7 is the 

standard measure associated to the non-atomic vector measure, then for every 

A ~ ~ fA u .  drl(u) =/z(f-~(A)), and thus ~(/~) D ~(~) .  On the other hand, 

H(~( /x) ,~)  =(/~(A(~)),~), where A ( ~ ) = I x  Exl([(x),~)>=O}=f-l(I-~), 
where H~ = {u ~ S"-~ [ (u, ()  - 0}, and thus Z ( 7 )  D ~(/~). As ~(/.Q is convex, 

and ~ ( ~ )  closed, Z ( 7 )  = ~(/x). Thus every zonoid is of the form Z ( 7 )  for some 

standard measure 7. If 7 is a standard measure we define the standard measure 

7" on S "-1 by 7 " ( E ) = ( 7 ( E ) + 7 ( - E ) ) / 2 .  

LEMMA 2.1. ([4, theorem 2], [2, theorem 22], [1, corollary 2.9]). Z(71) is a 
translate of Z(7~) if and only if 7~ = 7~. 

A zonoid Z is called a definite zonoid if it uniquely determines its standard 

measure, i.e., for any two standard measures 71 and 7~ with Z(7~) = Z = Z(7:),  

71 = 72. 

3. The proof of Theorem 1 

We will prove that each of the conditions (A), (B), (C) is equivalent to 

( D ) - - Z  is definite. 

LEMMA 3.1. Let Z be a definite zonoid, 0 the center o[ symmetry o[ Z. Then Z 
is a parallelepiped. 

PROOF. Let Z = Z(/~). If /~* denotes the standard measure given by 

# * ( E ) = I ~ ( - E )  then Z(l~*) = -Z(l~) .  As 0 is the center of symmetry of 

Z(/.t), Z( /z*)=  - Z ( / ~ ) =  Z(/~) and thus Z(/~ s) = Z(/~), but Z is definite and 
therefore /., =/~'. 

Let T:L| be the linear transformation defined by T[= 
fs.- ' f(u)udtz(u). 

Let W be the subspace of L| of all anti-symmetric functions, i.e., 

f (x  ) = - f ( -  x)/~-almost everywhere. 

Assume first that dim W >  n. Then, there is f E  W, 0<llfll-<l, such that 

Tf = 0, i.e., f f(x)xdl~(x) = 0. Let n be the measure on S "-1 which is absolutely 
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continuous with respect to g, with &T/dtz = 1- f .  As [If[l= < 1, rl is a standard 

measure, and as Ilfll # 0, r /#  #. As f is anti-symmetric it follows that for every 

A E 2 ,  r/(A U - A ) =  tz(A U - A )  and therefore by Lemma 2.1, Z(r l )  is a 

translate of Z(/z). In order to show that Z(r t)  = Z(/z) we have to show that both 

have the same center of symmetry, i.e., to show that ~(S "-1) =/2(S"-~). But 

f (l - f)(x )xdtz(x ) =  #(S"-') ~ f f(x )xdtz(x )/2(S ~ ) =/2(S "-~) ~(s"-') 

and thus Z ( r / ) = Z ( g ) .  Therefore if Z is a definite zonoid, dim W<n.  
However, dim W _-< n ift there is a finite set A with # A _<- n, such that A U - A 

is a support of /z. Without loss of generality we could assume that dim Z = n 

which implies that the set A consists of linearly independent vectors, i.e., Z(/z) 

is a sum of linearly independent line segments - -  a parallelepiped. 

LEMMA 3.2. Every zonoid Z has a decomposition of the form Z = Z~ + Z, 
where 0 is the center of symmetry of Z~ and an extreme point of Z2. 

PROOV. Let Z = Z ( / x )  where tz is a standard measure, v=fxdtz(x) .  
Denote by W' the set W' = { / E  L=(/~) [ 0 =<f =< 1, .ff(x)xd~(x) = v}, i.e., in the 

notations of the previous lemma, W' = T ~(v) n {f E L| [ 0 _-< f =< 1}. Thus W' 

is convex and compact, and if f, E W', f,+~<=f, and l imf,  = f  then by the 

Lebesgue dominated convergence theorem f E W'. Using Zorn's lemma we 

deduce the existence of f E W' such that there is no g E W' with g =< f, g # 

Let izl be the standard measure whose Radon-Nikodym derivative with respect 

to /.~ is 1~ and / z2= /z - / z~ .  Then Z(tz)=Z(tz~)+Z(I~2). First we claim that 

0Eex tZ( t~ l ) .  Otherwise there is O<=gt, g2<-f such that O#fgt(x)xdlz(x)= 
-fg2(x)xdtz(x). Let f '=f - (g l+g2) /2 .  Then f '<f ,  and f ' E W ' .  Thus 

0EextZ(/z~) .  As f E  W', /2j(S"-~) = v and thus 122(S"-~) = v - v =0 ,  which 

proves that 0 is the center of symmetry of Z~. 

LEMMA 3.3. Let 0 be an extreme point of a zonoid Z. Then Z is definite. 

P~oo~. By induction on dim Z. Assume rl~ and 7/2 are two standard measures 

with Z = Z ( ~ I ) =  Z(rt2). We have to prove that rh = rt2. If d i m Z  = 1, thi(s is 

obvious. Let dim Z > 1. As 0 is an extreme point of Z, there is ~: ~ R"  for which 

(x, s r =< 0 for every x ~ Z, and dim F(Z, ~:) < dim Z where F(Z, ~) is the 

corresponding face, i.e., F(Z, ~) = {x E Z [(x, ~) = H(Z, ~) = 0}. Then H, is a 

support for rli. If we denote by ~ ,  i = 1, 2, the standard measure ~i restricted to 

c~ = {x ~ R"  [(x, ~:) = 0}, then F(Z, ~) = Z(s ). By the induction hypothesis 

~ = ~2. Let ~r~ = r/~ - ~ , ,  i = 1,2. Then as Z(71,)= Z(~,)+Z(cr~) we conclude 
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that Z(o.1) = Z(o.2). Thus, by Lemma 2.1, o.1 o.2. As o o i .  = s H ~ -  H~\~j Is a support of 

both o.~ and o'2 and as H~ n - H~ = ~ we conclude that o.~ = o.2 and thus rh = ~2. 

Two sets K1, K2 U K are independent if dim(K~ + K2) = dim KI + dim K2, 

where dim K (for K E ~ )  is the dimension of the minimal subspace containing 

K. 

LEMMA 3.4. If Z1 and Z2 are two independent definite zonoids then Z~ + Z2 is 

definite. 

l~ooF.  Let ~, r/~, ~2 be standard measures with Z ( ~ ) =  Z(-~,)+ Z(~2) and 

Z ( ~ , ) = Z , ,  i = 1 , 2 .  Then Z ( ~ s ) = Z ( ~ ) + Z ( ~ ) = Z ( ~ + n ~ )  and thus by 

Lemma 2.1, ~s = ~/I + ~ .  Let  V~, i = 1, 2, be the minimal subspace of R"  which 

contains Z,. As Z1 and Z~ are independent,  V1O V~={0} and thus 

V, O V2 n S "-~ = O. As V~ is a subspace containing Z~, i = 1, 2, it follows that 

V~ A S ' - '  is a support for ~/i, and thus (V~UV2)AS  "-~ is a support for 

r/" = ~ + ~[.  Let ~ be the restriction of 7 / to  V, O S "-~, i = 1, 2. It is enough to 

prove that r = ~ .  Obviously, r  and thus by Lemma 2.1 Z(r = 
Z(~/~)+ X~, i = 1,2. As Z ( ~ , ) - Z ( ~ ) C  V~, X, ~ V~. However  

z(n) = z(n,) + z(m) = + 

= x ,  + + z ( n , )  + z ( m )  = ( x ,  + + z ( n ) .  

Therefore  X, + X2 = 0. But dim(V~ + 1/'2) = dim V1 + dim 1/2 and therefore 

X~ + X2 = 0 implies that X, = 0 = X2. Thus Z(~q~) = Z01,). As Z(~,) is definite, 

CO~OI.Ln~V 3.5. Every parallelepiped containing 0 is a definite zonoid. 

PROOF. Every one-dimensional zonoid is definite and a parallelepiped con- 

taining 0 is an independent sum of one-dimensional zonoids. 

The class of zonoids obeying condition (C) of Theorem 1 will be denoted @0. 

L ~  3.6. (D) r (C). 

1~oo~. (C) ~ (D). Let  Z be a zonoid in ~0. We will prove that Z is definite 

by induction on dim Z -  dim F(O) where F(O) is the (unique) extreme set of Z 

containing 0 in its relative interior. Without loss of generality (w.l.o.g.) dim Z = 

n. If dim Z - dim F(O) = 0, then 0 is in the relative interior of Z, and as Z ~ ~;o, 

it means that Z is a parallelepiped which is definite by Corollary 3.5. If 

dim Z - dim F(O) > 1, there is r ~ R"  such that 

0 ~ F(Z,  ~) = {v E Z [(v, ~) = max{(x, ~j)[ x E Z}. 
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As F(Z, ~) is an extreme set of Z, it follows that F(0) C F(Z,  s~). Let Z = Z( t t ) ,  

and let #~ be the standard measure/z restricted to ~l = (x E R"  I (x, ~:) = 0}, and 

let /x2 =/~ - tz,. Then, 0 E ext Z(/z2) and F(Z, ~) = Z(ix~). 
By Lemma 3.3, Z(/x2) is definite, and by the induction hypothesis Z(/x~) is 

definite. Thus for any standard measure or with Z ( t r ) =  Z, if r denotes the 

standard measure tr restricted to ~:l, Z(o" 0 = F(Z, ~) = Z(/-tl) and thus trl = g l ,  

and Z ( t r -  or0 = Z(g2) and thus o r -  or~ = it2 which, together with ~r~ =/. t l ,  

implies that or = ~t, i.e., that Z is definite. This proves that (C) f f  (D). 

(D) ~ (C). Assume that Z is definite. W.l.o.g. dim Z = n. First assume that 0 

is in the relative interior of Z, i.e., that F ( 0 ) =  Z. By Lemma 3.2, there is a 

zonoid decomposition Z = Z~ + Z2 where 0 E ext Zl ,  and 0 is the center of 

symmetry of Z2. Obviously, if Z is definite then Z2 is definite and thus, by 

Lemma 3.1, Z2 is a parallelepiped. As 0 E ext Z2, and 0 is in the relative interior 

of Zt, it follows that d i m F ( 0 ) =  dimZ~ and therefore dimZ1 = n. Let x~, . . . ,  x, 

be n linearly independent vectors in S "-~ such that A = 

{x~,..., x,} U { -  x ~ , . . . , -  x,} is a support of /x2 where Z2 = Z(/z2). As 0 is the 

center of symmetry of Z2,/~2({xi}) = t~2({-x~ })> 0. Let Z1 = Z(p.0. In order to 

prove that Z~ + Z2 is a parallelepiped it is enough to show that A is a support of 

~,. Otherwise, there is B ~ such that B f'IA = O ,  B f q - B  = ~  and 

/2~(B) ~ 0. As x , , . . . ,  x, are linearly independent, there is a linear combination 

Eot~x,=12,(B). Let 0</3_-<1 be such that ]/3a, l_-</~2({xi}). Let ~.~4 be the 

standard measure supported on A and given by 

- x ,  } )  = - x ,  } )  = } )  = 

Let /.t~ be the standard measure given by 

/.t3(E) = g , ( E ) - / 3 ,  g l (E  f') B ) + / 3 g , ( -  E f3 B). 

Observe that or = / ~  + g4 is a standard measure, and that or #/~. It could be 

easily verified that for every E E ~,  or(E U - E ) = / ~ ( E  U - E )  and that 

6"(S"-') = /2(S"- ' )  and therefore Z ( t r ) =  Z(/x). Thus by contradiction A is a 

support for /x~, which completes the proof in the case Z = F(0). Otherwise, 

0 E ext Z, and thus there is ~ E R such that 0 E F(Z, O. Let Z = Z( t t )  and let/z~ 

be the standard measure/x restricted to ~ .  Then Z(/x,) is definite and thus by 

the induction hypothesis, the extreme set of F(Z, ~) containing 0 in its relative 

interior is a parallelepiped. This completes the proof of Lemma 3.6. 

LEMMA 3.7. (D) r (B). 

PROOF. (D) ~ (B). Let Z be a definite zonoid and let Z = Z(r/)  where r / is  a 
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standard measure. Let (X,E, /x)  be the product vector measure space 

(S n-', ~ ,  @) x ([0, 1], ~ ,  A) where a is Lebesgue measure on ([0, 1], ~ ) .  Let 

Z = Z~ + Z2 be a zonoid decomposition of Z. Let Z~ = Z(*/,), Z2 = Z(*/2) where 

*/l and */2 are standard measures. Then Z ( * / ) =  Z = Z1 + Z2 = Z(*/ l)+ Z(*/2)= 

Z(*/l + */2) and as Z is definite, * /=  */~ + rt2. Let f, be the Radon-Nikodym 
derivative of */1 with respect to */; then 0_-<f = 1. Let S = {(u, t) [ u ~ S n-l, 

0 =  < t - f ( u ) } ,  then S is measurable and ~(/~, S ) =  Z(*/1), which completes the 

proof that (D) ~ (B). 

(B) ~ (D). By contradiction. Assume that Z is not a definite zonoid. Let 

(X,E, /z)  be a non-atomic vector measure with ~ ( / z ) = Z .  Let */, be the 

standard measure associated to /~ ;  and let 77 be a standard measure with */~ */~ 

and Z(*/)  = Z = Z(*/,).  As */~ ~/,,, there are ~ ~ R", a > 0 for which ( * / -  */,, ) 
n - i  ({uES"-ll(u,~)>=a})>O. Let a ={yES I(v, s r )=a} ,  and let */l be the 

standard measure */restricted to A. Then Z = Z(*/~)+ Z(*/-*/1) .  Assume that 

there is S E ~  with ~ ( / .~ ,S )=Z(* /0 .  Obviously the standard measure rl' 

associated to/~ls obeys 71 ' (A) -< */, (A).  However,  0 is an extreme point of Z(*/,) 

and thus */~ = */', which contradicts the inequalities * / ' (A)=  < * / , ( A ) <  */,(A). 

LEMMA 3.8. (D) r (A). 

PROOF. (D) ~ (A). Let Z be a definite zonoid and let /.~, ,r be two non- 

atomic vector measures on the measurable spaces (X~, ~ ) ,  (X2, .Y-a), respectively. 
Let (x~, . . . ,  xm)E ~,,(/x) and let (/~)7'=1 be a measurable partition of X, (i.e., 

E, EE~,  i ~ j ~ E ,  tqEj=O, LI~'=~E,=X 0 with /x(E, )=x, .  Let */ be the 

standard measure with Z ( * / ) =  ~(/ . t)  and let */~ be the standard measure 

associated to the vector measure ~ restricted to ~ .  Then ET'=~ */, = "0. Let fi, 

1 _-_ i --< m, be the Radon-Nikodym derivative of */, with respect to 71. Let g be 

the Radon-Nikodym derivative of o- with respect to I tr I, and let ~ = / ,  o g. Then 

0 = ~ - 1, E?_, ~ =< 1, and f fd t r  = f ~ (v)vd*/=  X,. By [3, theorem 4], there is a 

measurable partition (Si)?-~ of ( X 2 , ~ )  tor which tr(S~)=x,. Therefore 

(x~, . . . ,  x , ) E  ~m(tr) which completes the implication (D) ::> (A). 

(A) ~ (D). By contradiction. Assume that Z is not definite. Let */~, */~ be two 

different standard measures with Z(*/~)---Z = Z(*/~). Let ~: ~ Z be given by 

II ll--max{llxll:x Z}. Then, F(Z,~:)={~?} and thus both */~ and */~ are 
supported on S"-~\s r~- and g =fu;ud*/,(u), i= 1,2. Let @, be the standard 

measure */~ restricted to H~.  As Z(rh)  = Z(*/z), */~ = r/~ (Lemma 2.1) and 
therefore if */~ ~ */~ then also @~ g @:. But 0 E ext Z(@0 and thus Z(@~) ~ Z(@~). 

Without loss of generality there is x ~ Z(@i)\Z(@ 0. Let y be the center of 
symmetry of Z, i.e., 2y =@,(S'-1).  Then the vector ( x , ~ - x , 2 y - ~ : )  is in 
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~3(rh x A) but not in ~3(~/z x A), where A is the Lebesgue measure on [0, 1]. As 

~ (~2x  A) = Z = ~ (~ t  x A) this contradicts (A). 

COROLLARY 3.9. Let I-~ and or be the two non-atomic vector measures. Then 

the following conditions are equivalent. 

(3.10) ~m (t~ ) = ~. ,  (or) for every m > 1, 

(3.11) ~tk (l~ ) = ~tk ( or ) for some k 23 ,  

(3.12) 9~3(/.t) = ~3(or), 

(3.13) r/~ = r/.. 

PaooF. The implication (3.10) ~ (3.11) is trivial. For (3.11) ~ (3.12) observe 

that if ~k+l(/~) = ~tk+,(or) then 9~E(/Z)= ~(or) .  (3 .12)~ (3.13) was actually 

proved in (A) ~ (D) of Lemma 3.8 and (3.13) ~ (3.10) was proved in (D) 
(A) of Lemma 3.8. 

4. Decompositions of sums of countable many one-dimensional zonoids 

Every convergent countable sum of closed intervals containing 0 is a zonoid; 

this class of zonoids is denoted by ~ .  

THEOREM 4.1. The following conditions on a zonoid Z are equivalent: 

(4.2) Z E ~:o, 

(4.3) Z = a Z  + (1 - a)Z ,  0 <-- ot <= 1, is a zonoid decomposition of Z 

w.r.t, any non-atomic vector measure with range Z. 

THEOREM 4.4. The following conditions on a zonoid Z are equivalent: 

(4.5) 

(4.6) 

n o, 

any zonoid decomposition Z = Z ,  + Z2 is a decomposition 

w.r.t, any non-atomic vector measure with range Z. 

LEUMA 4.7. The following conditions on a zonoid Z are equivalent: 

(4.2) Z E ~:o, 
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(4.8) Z = Z(71) for some purely atomic standard measure T1, 

(4.9) every standard measure ~! with Z (  ,? ) = Z is purely atomic. 

P~ooF. (4.2) ~ (4.8). Observe that if O E [ x , y ] - { t x + ( 1 - t ) y : O < t < = l }  
where x, y E R"  then [x, y] = [0, x] + [0, y] and thus if Z E 3~a, Z is of the form 

Y~T=,ot,[O,x,] with a,>O, x, E S " - '  and Y..=,a, <oo. Let 7/, be the standard 

measure supported on {xi} with ~i({x~})=a, Then Z(~l~)=a~[O,x~] and by 

putting 71 = Y~7=1 ~q~, ~ is purely atomic and Z0q)  = XT=, Z(~I,) = 7_. 
(4.8) ==~ (4.9). If Z(~/,) = Z(~q2) then ~ = ~q~, but ~/, is purely atomic iff ~/I is 

purely atomic. The implications (4.9) ~ (4.8) ~ (4.2) are obvious. 

LEMMA 4.10. Let (X,X, ~)  be a non-atomic vector measure space, with 

standard measure 7,  which is purely atomic. Then for any two standard measures 
~11, ~12 with ~ql + ~2 = ~q,,, Z ( ~ , )  ---- ~ ( # )  = Z0q,) + Z0q2) is a decomposition w.r.t. 

PROOF. Let {y~}.=l be the support of ~/---~,, where y~ E S " - '  and i # j  

y ,#  yj, and let at = ~({y,}). Then as 7/, + "q2 = ~/, ~q,({y,}) = t,a, with 0 = < t, < 1 and 

{y~}7=~ is a support of 71. Therefore, Z(~ , )=  Z7=i t,a~[O, y~]. Let [ = d#/d([l~ [) 
and X~ =/ - l (y , ) .  Then X~ E E and X~ N Xj = O whenever i # j .  

By Liapounoff's theorem there are measurable subsets Y~ of X~ with 

t~ (Y~) = t,# (X~) = t,a~y,, and thus ~ (#, Y~ ) = t,~ (#., X, ) = t,a, [0, x, ] and thus if 

Y =  UT=~ Y~, ff~(/~, Y ) =  E7=, ~(/-~, ~)=Er=,t~a,[O,y,] = Z('0,). 

P~OOF oF T~I~O~M 4.1. (4.2) ~ (4.3). Let (X,E,I.~) be a vector measure 

space with range ~ (/~) in ~ .  Let ~ be the standard measure associated to #. 

By Lemma 4.7, ~, is purely atomic. Let 0 ~  a < 1 and let ~. = a~ , .  Then 

Z ( ~ . ) = a Z ( ~ , )  and r l ~ + ~ _ ~ = ~ , .  Thus by Lemma 4.10, O~(/~)= 

aZ(~ , )  + ( 1 -  a ) Z ( ~ , )  is a decomposition w.r.t. ~. 

(4.3) ~ (4.2). By contradiction. Let Z be a zonoid, Z ti~ ~:.. Let M ( Z )  be the 

set of all standard measures B with Z ( ~ ) =  Z. Theorem 4.2 of [1] implies the 

existence of a constant p(Z)  for which ~(S"-~)<p(Z)  whenever 77 ~ M ( Z ) .  
Therefore M ( Z )  is a bounded subset of C(S" ')*. It is easy to verify that M ( Z )  
is a closed subset of C(S"-')* in the weak*-topology. Thus, Alaoglu's theorem 

([5], 3.15) implies that M ( Z )  is a compact subset of C(S"-~) *. Obviously M ( Z )  is 

also convex and therefore by the Krien-Milman theorem ([5], 3.21) M ( Z )  has an 

extreme point. Let 7/ be an extreme point of M(Z) .  By Lemma 4.7, ~ is not 

purely atomic. Let ~ = 71, + ~-~ be a decomposition of ~ into a purely atomic part 

~, and a non-atomic part ~_,, and S ' - '  = S(~l) U S ( ~ )  a disjoint decomposition 

of S "-~ as the union of a support S(~,) of rl, and S(~2) of ~2. Let (X, X,, ~,) be 
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the (product) non-atomic vector measure space (S(r/I), ~ ,  ~ )  x ([0,1], ~ ,  ;t). 

Observe that (dlxddlml)(x,  t) = x and that the standard measure associated to 

/z~ is r/l. Let (X2, ~ , / z2 )  be the non-atomic vector measure space (S(r/2), ~ ,  ~2). 

Observe that (dl.t2/d I/z2 [)(x) = x and that the standard measure associated to p,2 

is r/2. Let (X, 2,  it) be the disjoint sum of the two non-atomic vector measure 

spaces (X, ,2 , , /g) ,  i =  1, 2. That is, X = X~ t_J X2 and for A C X, A E 2 ill 

A A X~ E 2 ,  i = 1,2 and t h e n / x ( A )  = ~ ( A  tq X 0 + / z 2 ( A  f'l X2). Observe that 

is the standard measure.associated to (X, 2, /z) .  Let Y E 2 with ~(/L, Y) = 2aZ. 

Denote  Y, = Y N X~, i = 1,2 and identify Y2 as a subset of S(rh). Let ~- be  the 

vector measure/a, restricted to (Y, 2. ~. ). Observe that I ~" I is the restriction of I/z I 

to Y, and that g =- d~'/d ] r is the restriction of f ==- dl~/d I/z I to Y. Let or be the 

standard measure associated to (Y,2.y,I"). Then for measurable A C Y2, 

o . ( A ) = l r  (g -~ (A) )= l r  and for measurable 
A CS(rl2)\Y2, Therefore if r/2~O then 

2o.~ r/. 

For measurable A CS ~-~, o.(A)=lr162 Y)<- 
I tz  I ~ f-~(A) = 71 (A). Therefore 11 - o. is a standard measure and Z ( , / -  o.) + 
Z (O . )=Z( r / ) .  On the other hand, as Z ( o . ) =  9~(/~, Y ) = ~ Z ,  Z ( o . ) + Z ( o . ) =  

Z(r / )  and thus Z ( r / -  o.) = Z(o.). Therefore, 2 r / - 2 o -  ~ M ( Z )  and 2o- ~ M(Z) .  
As r/ is an extreme point in M(Z) ,  2o- = r/ which contradicts the inequality 

2o-~ n- 

PROOF OF THEOREM 4.4. (4.5) ~ (4.6). Let Z E  ~ A ~:0, and let (X,2,p.)  be a 

vector measure space with r a n g e ~ ( / x ) =  Z. Let rl, be the standard measure 

associated to/z. Let Z = Z~ + Z2 be a zonoid decomposition and let rh, r/2 be two 
standard measures with Z~ = Z(~/,), i = 1, 2. Then Z(r/I + r/2) = Z('01) + Z(r/2) = 

Z = Z(r/~). As Z ~ ~Fo, Z is definite by Lemma 3.6 and therefore r/,, = rh + r/2 

and thus by Lemma 4.10, Z = Z~ + Z2 is a decomposition of Z w.r.t. /z. 

(4.6) ~ (4.5). Follows by the implication (4.3) ~ (4.2) of Theorem 4.1, and 

(B) ~ (C) of Theorem I. 
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